DOI: http://dx.doi.org/10.18782/2320-7051.4032

ISSN: 2320 – 7051 *Int. J. Pure App. Biosci.* **5** (6): 501-509 (2017)

Research Article

Optimization of Agro-Techniques to Maximize Productivity and Economics Profits of Maize (*Zea mays* L.) Under Irrigated and Non-Irrigated Conditions

Gurdeep Singh, B. A. Lone^{*}, Zahoor Ahmad Dar, Purshotam Singh, Asma Fayaz, Sandeep Kumar, Sameera Qayoom and K. N. Singh *Corresponding Author E-mail: alonebilal127@gmail.com Received: 12.06.2017 | Revised: 22.07.2017 | Accepted: 25.07.2017

ABSTRACT

Two field experiments were conducted at Shalimar Campus of Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir during 2012 and 2013 under irrigated and unirrigated mulched conditions with the objective to study the growth and yield of maize at different planting dates and planting density and to simulate trends of maize production. Experiment was laid in split-plot design assigning four planting dates 15^{th} April (D₁), 30^{th} April (D₂), 15^{th} May (D_3) and 30^{th} May (D_4) to main plots and three planting density $50 \text{cm} \times 20 \text{cm}$ (S_1) , $60 \text{cm} \times 20 \text{cm}$ (S_2) and 70cm×20cm (S_3) to sub-plots. The planting date 15^{th} April (D_1) produced highest yield of 50.60 and 53.81 q ha⁻¹ under irrigated conditions and 43.59 and 45.28 q ha⁻¹ under unirrigated mulched conditions during 2012 and 2013, respectively. Among planting density $60 \text{ cm} \times 20 \text{ cm}$ (S₂) recorded highest grain yield of 42.32 and 44.72 q ha⁻¹ under irrigated conditions and 36.63 and 38.53 q ha⁻¹ under un-irrigated mulched conditions during 2012 and 2013, respectively. Under irrigated conditions highest net return (US\$. 87170), gross return (US\$. 1810), and B: C ratio (2.18) was observed with treatment combinations of 15^{th} April (D₁) with $60cm \times 20cm$ (S₂). The next best treatment combination was 15^{th} April (D₁) with $50cm \times 20cm$ (S₁) with net return (US\$. 1239), gross return (US\$. 1804) and B: C ratio was 2.17. Un-irrigated mulched condition influenced the cost of production, gross return, net return and B: C ratio of crop. Highest net return (US\$. 852), gross return (US\$. 1586), and B: C ratio (1.16) was observed with treatment combinations of 15^{th} April (D_1) with $60 \text{cm} \times 20 \text{cm}$ (S_2).

Key words: Temperate Kashmir, US\$, Planting dates, Planting density, Yield, Economics, B:C ratio.

INTRODUCTION

Maize known as the "Queen of Cereals" is the third most important cereal crop in India after rice and wheat and is cultivated on 8.17 million ha with the production of 19.73 million tonnes and productivity of 4.21 tonnes ha⁻¹⁻¹.

Among the major crops of Jammu and Kashmir in terms of acreage maize is grown in area of 315.81 thousand hectares with the production of 0.63 million tonnes and productivity of 2.0 tonnes ha^{-1 2}.

Cite this article: Singh, G., Lone, B. A., Dar, Z. A., Singh, P., Fayaz, A., Kumar, S., Qayoom, S. and Singh, K.N., Optimization of Agro-Techniques to Maximize Productivity and Economics Profits of Maize (*Zea mays* L.) Under Irrigated and Non-Irrigated Conditions, *Int. J. Pure App. Biosci.* **5**(6): 501-509 (2017). doi: http://dx.doi.org/10.18782/2320-7051.4032

Singh et al

This increase in yield has been mainly achieved by increase in the area under high yielding varieties. However, the genetic potential of the improved varieties is at least three times of the present average yield of the state. In India maize production in Jammu & Kashmir is 0.53 million tones on an area of 3.17 million hectares with an average yield of 1776 Kg ha^{-1 3}.

Maize is grown under wide range of climatic conditions, mostly in warmer parts of the temperate region and areas of humid subtropical climate. It is grown practically at all altitudes except where it is too cold or the growing season is too short. The crop requires considerable moisture and warmth from the time of planting to the termination of flowering period. The amount and distribution of rainfall are important in maize production. Maize cannot tolerate water stagnation. Rainfall of 50-75 cm during the vegetative period is helpful for proper development of maize plant. Moisture stress at the flowering stage drastically lowers the grain yield. Maize is grown in the state during kharif season and about 85% of the cropped area is rainfed. Under such considerable rainfed area and there is scope of increasing productivity by using low cost available mulch as under existing agro- climatic condition, the maize crop, is prone to the vagaries of rainfall distribution during crop growth. Application of full water requirement of plants is not economical. It is advisable to irrigate with 75% water requirement. This gives similar yield while saving a lot on water and labour. However, the 66,000 plants per hectare treatment should be used as it translates to higher yield and more protection for the soil⁴. The productivity potential of hybrid/composite cannot be realized without proper management practices. The optimum date of sowing is important for maize so that the genotype grown can complete its life cycle under optimum environmental conditions. Rainfed agriculture covers 80% of the world's cultivated land, and contributes about 60% to the total crop production^[5]. There are various options for increasing 'crop yield per drop and bag', such as straw mulching and plastic mulching. These

soil mulching management techniques can reduce evaporation and erosion, modify soil temperature, and reduce weed infestation, and thereby may lead to increases in yield, and possibly water use efficiency (WUE) and nitrogen (N) use efficiency (NUE)⁶.

Optimum plant density provides conditions for maximum light interception right from early period of crop growth. Sowing dates have a pronounced effect on the yield of maize. Maize is generally sown from mid week of April to last week of May in lower belts of Kashmir valley. However, the field may not be vacant at this appropriate time due to delay in harvesting of some rabi crops. A field experiment was therefore conducted to see the impact of date of sowing and planting density on productivity and economics of Maize under irrigated and unirrigated conditions.

MATERIALS AND METHODS

The investigation was conducted at the experimental farm of Division of Agronomy at main Campus of Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar Srinagar which is situated 16 Km away from city center that lies between 34.08 ° N latitude and 74.83 ° E longitude at an altitude of 1587 meters above the mean sea The climate is temperate level. type characterized by hot summers and severe winters. The average annual precipitation over past twenty-five years is 786 mm (Division of Agronomy, SKUAST-Kashmir) and more than 80 % of precipitation is received from western disturbances during winter/spring months. During crop growth period (15th April - 4th October) the maximum temperature ranged between 18° C to 32° C, while minimum temperature ranged between 4.30 °C to 17.78 ⁰C with relative humidity 49-89% (maximum) and minimum being between 23% to 86%. The mean monthly meteorological data collected for the cropping season of 2012 and 2013 during experimental period recorded at the Meteorological observatory at Division of Agronomy, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar.

Singh et al

The experiment included four dates of sowing with three levels of spacing was laid out in a Split Plot Design with three replications assigning four planting dates 15th April (D₁), 30^{th} April (D₂), 15^{th} May (D₃) and 30^{th} May (D_4) to main plots and three planting density $50 \text{cm} \times 20 \text{cm}$ (S₁), $60 \text{cm} \times 20 \text{cm}$ (S₂) and $70 \text{cm} \times 20 \text{cm}$ (S₃) to sub-plots. Certified seed of maize variety "C6" was used in the experiment. It matures in 155 to 160 days in the valley and 125 to 130 days in the mid elevations. Urea, Diammonium phosphate (DAP), Muriate of potash (MOP) and zinc sulphate were used as source of nitrogen, phosphorus, potassium, and zinc respectively. A fertilizer dose of 10 ton FYM ha⁻¹, 120 kg N ha⁻¹, 60 kg P_2O_5 ha⁻¹, 30 kg K_2O ha⁻¹, 20 kg ZnSO₄ ha⁻¹ was applied. A fertilizer dose of 10 ton FYM ha⁻¹, 90 kg N ha⁻¹, 60 kg P_2O_5 ha⁻¹, $30 \text{ kg } \text{K}_2\text{O} \text{ ha}^{-1}$, $10 \text{ kg } \text{ZnSO}_4 \text{ ha}^{-1}$ was applied. Half of recommended nitrogen was applied as basal dose and rest of nitrogen in two splits. Ist split at knee high stage and 2nd at tasseling stage. Phosphorus, potassium and zinc sulphate was applied, per as the recommendation as basal dose at the time of sowing. Furrow method of irrigations was followed. Irrigation was applied at IW/CPE ratio 0.75 in Experiment-I. In IW: CPE approach, cumulative pan evaporation values from standard USWB class 'A' pan evaporimeter were used for scheduling of irrigation. A common depth of irrigation was maintained at 6 cm uniformly. Jenson et al⁸., and Valencia & Steven⁹ reported mulching of the un-irrigated crop was done with the available rice straw. A thin layer of mulch of about 5-10cm was done. The grain yield of each net plot was thoroughly cleaned and sun dried. The yield from each plot was recorded separately as kg plot⁻¹ and then converted in q ha⁻¹. After removal of the cobs from stalks, the maize stover was sun dried and weighed to determine the stover yield in q ha⁻¹.

RESULTS AND DISCUSSION

The planting dates and planting density influenced cost of production, gross return, net return and B: C ratio of maize crop. Under irrigated conditions highest net return (US\$.1245), gross return (US\$. 1810.57), and B: C ratio (2.18) was observed with treatment combinations of 15th April (D_I) with $60 \text{cm} \times 20 \text{cm}$ (S₂) Table 4. The next best treatment combination was 15th April (D₁) with $50 \text{cm} \times 20 \text{cm}$ (S₁) with net return (US\$. 1239), gross return (US\$. 126308) and B: C ratio was 2.17. Where lowest economics return was observed with treatment combination of 30th May (D_4) with 70cm×20cm (S_3) . The corresponding value for net returns, gross return and B: C ratio was US\$. 792, US\$. 1353 and 1.39, respectively. 15th April (D1) followed by 30^{th} April (D₂). This is due to delay in sowing reduces the growth duration, LAI and dry matter production⁹ The results are in conformity with the findings of Cantarero et al^{10} .

Under irrigated conditions highest net return (US\$. 1245), gross return (US\$. 1810), and B: C ratio (2.18) was observed with treatment combinations of 15th April (D_I) with $60 \text{cm} \times 20 \text{cm}$ (S₂). Lowest economic return was observed with treatment combination of 30th May (D_4) with 70cm×20cm (S_3) . The corresponding value for net returns, gross return and B: C ratio was US\$. 792, US\$. 1353 and 1.39, respectively (Table 5). Highest net return (US\$ 852), gross return (US\$. 1586), and B: C ratio (1.16) was observed with treatment combinations of 15th April (D_I) with $60 \text{cm} \times 20 \text{cm}$ (S₂). Where lowest economics observed with return was treatment combination of 30th May (D_4) with $70 \text{cm} \times 20 \text{cm}$ (S₃). The corresponding value for net returns, gross return and B: C ratio was US\$. 400, US\$. 1138 and 0.54, respectively.

Data indicated that planting date and planting density of maize under un-irrigated mulched condition influenced the cost of production, gross return, net return and B: C ratio of crop Table 5. Highest net return (US\$. 852), gross return(US\$ 1586), and B:C ratio (1.16)was observed with treatment 15^{th} of April (D_1) combinations with $60 \text{cm} \times 20 \text{cm}$ (S₂). The next best treatment combination was 15th April (D_1) with $50 \text{cm} \times 20 \text{cm}$ (S₁) net return (US\$ 816), gross

Singh et al

return (US\$ 1550) and B:C ratio was 1.11. Where lowest economics return was observed with treatment combination of 30^{th} May (D₄) with $70 \text{cm} \times 20 \text{cm}$ (S₃). The corresponding value for net returns, gross return and B: C ratio was US\$ 400,US\$ 1138 and 0.54, respectively. Among planting density $60 \text{cm} \times 20 \text{cm}$ (S₂) significantly recorded higher yield attributing characters like cob length, number of grains row⁻¹, number of rows cob⁻¹, and cob diameter during both the years. significantly 70cm×20cm (S_3) Spacing exhibited more number of grains cob⁻¹ while other yield attributing characters were least. However minimum yield attributing characters were recorded in spacing $50 \text{cm} \times 20 \text{cm}$ (S₁) during both the years (table 2). During 2013, significantly superior grain yield was obtained with 15^{th} April (D₁) and was at par with 30^{th} April (D_2) which in turn was at par with 15^{th} May (D_3) as compared to other planting date. However, during 2012, 15th April (D₁), 30th April (D₂) and 15th May (D₃) were at par with each other and significantly higher over 30th May (D₄). Lowest grain yield was recorded in 30th May (D₄) in 2012. The magnitude of superiority by 15th April (D₁) sowing over 30th April (D₂), 15^{th} May (D₃) and 30^{th} May (D₄) sowing was 3.42, 8.72 & 54.24 % in 2012. The corresponding value during 2013 was 10.23, 19.68 & 52.51 %, respectively. The results are in the corroboration with the findings of Marchao *et al*¹¹. Since spacing $60 \text{cm} \times 20 \text{cm}$ (S₂) recorded comparatively longer growth phases, better dry matter production and partitioning resulting better yield attributing characters (Table 1).

The present investigation revealed that planting date and planting density under unirrigated mulched condition planting date 15^{th} April (D₁) being at par with 30^{th} April (D₂) sowing recorded significantly higher stover yield over other planting dates. In turn 30^{th} April (D₂) sowing was at par with 15^{th} May (D₃) in both the years but significantly superior over 30^{th} May (D₄) planting dates. While, 30^{th} May (D₄) recorded lower stover yield as compared to other planting dates during both the years. The magnitude of superiority by 15^{th} April (D₁) over 30th April (D₂), 15th May (D₃) and 30th May (D₄) was 4.25, 11.09 and 20.90 % in 2012. Whereas the corresponding values during 2013 was 4.86, 11.28 and 22.22 %, respectively.

With regard to various spacing, planting dates at 15th April (D₁) being at par with 30^{th} April (D₂), and 15^{th} May (D₃) recorded significantly higher grain yield as compared to 30^{th} May (D₄) sowing during both the years. However, lower grain yield was recorded in 30^{th} May (D₄) during both the years. The magnitude of superiority by 15th April (D₁) over 30^{th} April (D₂), 15^{th} May (D₃) and 30th May (D₄) was 8.14, 15.76 and 55.24 % in 2012. Whereas the corresponding values during 2013 was 8.08, 15.32 and 5.51%, respectively. Stover yield of maize differed significantly due to planting dates and planting density. It is depicted from the Table 4. during 2013, planting date 15^{th} April (D₁) being at par with 30^{th} April (D₂) sowing significantly recorded higher stover yield than other sowing dates. Significantly lower stover yield was recorded with 30th May (D₄) sowing in both the years. The magnitude of superiority by 15th April (D₁) over 30^{th} April (D₂), 15^{th} May (D₃) and 30th May (D₄) was 6.82, 15.35 and 23.47 % in 2012. Corresponding values for the year 2013 was 5.48, 14.00 and 22.64 %.

Among plant densities, there was significant difference between spacing over stover yield during both the years. Spacing $50 \text{cm} \times 20 \text{cm}$ (S₁) significantly recorded higher stover yield over other treatments during both the years. Though difference between $50 \text{cm} \times 20 \text{cm} (S_1)$ and $60 \text{cm} \times 20 \text{cm} (S_2)$ was not significant. In turn spacing 60cm×20cm (S₂) was at par with 70cm \times 20cm (S₃) in both the years. Lower stover yield was recorded with plant density 70cm×20cm (S₃) in both the years than other treatments. The magnitude of superiority by spacing $60 \text{cm} \times 20 \text{cm}$ (S₂) over $50 \text{cm} \times 20 \text{cm}$ (S₁) and $70 \text{cm} \times 20 \text{cm}$ (S₃) was 2.86 and 5.07% in 2012. The corresponding values for the year 2013 was 3.92 and 7.67 %.

With respect to planting density, there was significant difference between treatments during both the years. Spacing 60cm×20cm

Singh <i>et al</i>	Int. J. Pure App. Biosci. 5	(6): 501-509 (2017)	ISSN: 2320 – 7051
(S ₂) recorded significantly h	nighest grain yield	(S_3) . The magnitude of	superiority by spacing
than 50cm×20cm (S1) and	70cm×20cm (S ₃)	$50 \text{cm} \times 20 \text{cm}$ (S ₁) over	$60 \text{cm} \times 20 \text{cm}$ (S ₂) and
spacing during both the yea	rs. Where spacing	70cm×20cm (S ₃) was 3	3.49 and 11.50 % in
$60 \text{cm} \times 20 \text{cm}$ (S ₂) was at par	with 70cm×20cm	2012. The correspondin	g values for the year
(S ₃) during 2012. In turn 70c	$m \times 20 cm (S_3)$ was	2013 were 3.81 and 11.	86 %. influenced the
at par with 50cm×20cm (S_1)	. Where difference	cost of production, gross	s return, net return and
between 50cm×20cm (S ₁)	and 70cm×20cm	B: C ratio of crop. Hig	ghest net return (US\$
(S ₃) was not significant in	2013. However,	852), gross return (US\$	1586), and B:C ratio
lowest grain yield wa	as recorded in	(1.16) was observe	d with treatment
$50 \text{cm} \times 20 \text{cm} (S_1)$ in during b	ooth the years. The	combinations of 15 th	^h April (D _I) with
magnitude of superiorit	y by spacings	$60 \text{cm} \times 20 \text{cm}$ (S ₂) (table	e 7). The next best
$60 \text{cm} \times 20 \text{cm}$ (S ₂) over 50 cm	$m \times 20 cm$ (S ₁) and	treatment combination w	vas 15^{th} April (D _I) with
$70 \text{cm} \times 20 \text{cm}$ (S ₃) was 8.54	and 5.10 % in	$50 \text{cm} \times 20 \text{cm}$ (S ₂) net ret	turn (US\$ 816), gross
2012. The corresponding va	alues for the year	return (US\$ 1550) and	B: C ratio was 1.11.
2013was 8.66 and 8.07 %.	data revealed that	Whereas lowest eco	nomics return was
spacing 50cm×20cm (S ₁) t	being at par with	observed with treatmen	t combination of 30 th
$60 \text{cm} \times 20 \text{cm}$ (S ₂) record	led significantly	May (D_4) with 70c	$m \times 20 cm$ (S ₃). The
highest stover yield than	$70 \text{cm} \times 20 \text{cm}$ (S ₃)	corresponding value for	or net returns, gross
spacing in both the years.	Whereas lowest	return and B: C ratio wa	as US\$ 400,US\$ 1138
stover yield was recorded	with 70cm×20cm	and 0.54, respectively.	

50cm×20cm (S1) over 60cm×20cm (S2) and
70cm×20cm (S ₃) was 3.49 and 11.50 % in
2012. The corresponding values for the year
2013 were 3.81 and 11.86 %. influenced the
cost of production, gross return, net return and
B: C ratio of crop. Highest net return (US\$
852), gross return (US\$ 1586), and B:C ratio
(1.16) was observed with treatment
combinations of 15^{th} April (D _I) with
$60 \text{cm} \times 20 \text{cm}$ (S ₂) (table 7). The next best
treatment combination was 15 th April (D _I) with
50cm×20cm (S ₂) net return (US\$ 816), gross
return (US\$ 1550) and B: C ratio was 1.11.
Whereas lowest economics return was
observed with treatment combination of 30 th
May (D_4) with 70cm×20cm (S_3) . The
corresponding value for net returns, gross
return and B: C ratio was US\$ 400,US\$ 1138
and 0.54, respectively.

Table 1: Effect of planting dates and planting density on the yield attributes
of maize under irrigated conditions

		01	maize	under i	rrigate	a cona	luons					
Treatments	Cob Length (cm)		Grains row ⁻¹		Rows cob ⁻¹		Grains cob ⁻¹		Cobs plant ⁻¹		Cob diameter (mm)	
	2012	2013	2012	2013	2012	2013	2012	2013	2012	2013	2012	2013
Planting dates												
15 th April (16 th SMW - D ₁)	16.39	16.51	20.31	20.09	12.12	12.24	243.49	245.90	1.12	1.16	33.79	33.82
30th April (18th SMW -D2)	15.40	15.64	19.23	19.55	12.26	12.09	235.75	236.35	1.09	1.22	32.84	33.34
15 th May (20 th SMW - D ₃)	13.70	13.91	19.41	19.46	11.63	11.94	225.74	232.35	1.08	1.10	32.60	32.66
30 th May (22 nd SMW- D ₄)	10.06	10.31	15.64	16.34	10.36	10.73	162.03	175.32	0.96	0.98	27.55	28.29
SEm <u>+</u>	0.71	0.66	0.68	0.61	0.39	0.37	10.25	11.72	0.01	0.02	0.41	0.53
CD (p ≤ 0.05)	2.11	2.06	2.13	1.91	1.22	1.18	35.48	37.14	0.06	0.07	1.85	1.85
Planting density												
$50 \text{cm} \times 20 \text{cm} (S_1)$	13.20	13.44	17.82	18.01	10.62	10.72	189.24	193.06	1.04	1.09	31.88	32.21
$60 \text{cm} \times 20 \text{cm} (\text{S}_2)$	14.90	14.98	20.31	19.21	11.40	11.45	231.53	219.95	1.08	1.15	32.10	32.30
$70 \text{cm} \times 20 \text{cm} (S_3)$	13.55	13.86	19.85	19.37	12.27	13.10	253.08	253.74	1.06	1.10	31.11	31.55
SEm <u>+</u>	0.19	0.17	0.40	0.36	0.23	0.25	7.63	7.94	0.004	0.006	0.10	0.07
CD (p ≤ 0.05)	0.56	0.51	1.25	1.17	0.80	0.79	23.98	24.23	0.02	0.02	0.33	0.25

Table 2: Grain yield, stover yield, biological yield , harvest index and seed index of maize as influenced by planting dates and planting density under irrigated conditions

Treatments	Grain Yield (q ha ⁻¹)		Stover yield (q ha ⁻¹)		Biological yield (q ha ⁻¹)		Harvest index (%)		Seed index (g)	
	2012	2013	2012	2013	2012	2013	2012	2013	2012	2013
Planting dates										
15th April (16th SMW - D1)	50.60	53.81	71.05	71.27	121.65	125.08	41.59	43.20	22.02	22.33
30^{th} April (18 th SMW -D ₂) 15 th May (20 th SMW - D ₃)	47.18 41.88	48.30 43.22	66.20 60.14	67.36 61.29	113.38 102.02	115.66 104.51	41.61 41.05	41.76 41.35	21.40 20.40	21.88 20.01
30th May (22nd SMW- D4)	23.15	25.55	54.37	55.13	77.52	80.68	29.86	31.66	17.32	17.59
SEm <u>+</u>	3.18	3.20	1.81	1.72	4.19	4.92	1.26	1.22	0.50	0.51
CD (p ≤ 0.05)	9.15	9.42	5.56	5.38	12.32	14.23	3.91	3.84	1.56	1.58
Planting density										
$50 \text{cm} \times 20 \text{cm} (\text{ S}_1)$	40.20	42.56	64.68	66.31	104.88	108.62	38.32	39.13	19.68	19.70
$60 \text{cm} \times 20 \text{cm} (S_2)$	42.32	44.72	62.83	63.74	105.15	108.46	40.24	41.23	20.87	20.93
$70 \text{cm} \times 20 \text{cm} (S_3)$	39.59	40.89	61.40	61.22	100.99	101.60	39.20	39.74	20.30	20.73
SEm <u>+</u>	0.81	0.69	0.85	0.92	0.48	0.75	0.22	0.24	0.12	0.13
CD (p≤0.05)	2.52	2.14	2.75	2.96	1.50	2.31	0.64	0.70	0.39	0.41

Int. J. Pure App. Biosci. 5 (6): 501-509 (2017)

Table 3: Effect of planting dates and planting density on the yield attributes of maize under un-irrigated mulched conditions

Tucchmente	Cob Length (cm)		Grains row ⁻¹		Rows cob ⁻¹		Grains cob ⁻¹		Cobs plant ⁻¹		Cob diameter (mm)	
1 reatments	2012	2013	2012	2013	2012	2013	2012	2013	2012	2013	2012	2013
Planting dates												
$15^{th} April (16^{th}SMW \text{ - } D_1)$	15.72	15.95	19.82	19.92	12.14	12.21	240.61	243.10	1.03	1.05	33.96	34.25
$30^{th}April(18^{th}SMW\ \text{-}D_2)$	14.90	15.19	19.62	19.66	12.05	12.00	236.42	235.92	1.00	1.02	33.54	33.72
15 th May (20 th SMW - D ₃)	13.43	13.72	19.13	19.32	11.69	11.83	223.62	228.55	0.97	0.98	32.21	32.54
30 th May (22 nd SMW- D ₄)	10.00	10.21	15.93	15.55	10.55	10.34	168.06	160.78	0.85	0.87	27.39	27.58
SEm ±	0.58	0.62	0.55	0.62	0.19	0.27	9.56	10.02	0.02	0.02	0.48	0.41
CD (p ≤ 0.05)	1.90	1.92	1.74	2.18	0.68	0.96	31.70	34.71	0.06	0.06	1.69	1.45
Planting density												
$50 \text{cm} \times 20 \text{cm} (\text{ S}_1)$	13.21	13.37	17.79	17.89	10.79	10.68	191.95	191.06	0.94	0.96	31.61	31.95
$60 \text{cm} \times 20 \text{cm} (\text{ S}_2)$	14.09	14.41	19.06	19.11	11.16	11.29	215.75	217.66	0.97	0.99	32.14	32.43
$70cm \times 20cm$ (S_3)	13.25	13.52	19.01	18.83	12.87	12.81	244.65	241.21	0.96	0.98	31.57	31.69
SEm <u>+</u>	0.08	0.10	0.23	0.31	0.20	0.29	8.16	8.64	0.003	0.003	0.05	0.06
CD (p≤0.05)	0.32	0.34	0.78	1.06	0.64	0.93	26.04	26.97	0.01	0.01	0.19	0.24

Table 4: Grain yield, stover yield, biological yield, harvest index and seed index of maize as influenced by planting dates and planting density under un-irrigated mulched conditions

Treatments	Grain yield (q ha ⁻¹)		Stover yield (q ha ⁻¹)		Biological yield (q ha ⁻¹)		Harvest index (%)		Seed index (g)	
	2012	2013	2012	2013	2012	2013	2012	2013	2012	2013
Planting dates										
$15^{th}April(16^{th}SMW\mbox{-}D_1)$	43.59	45.28	61.55	63.27	105.14	108.55	41.45	41.71	21.04	21.11
$30^{th}April (18^{th} SMW - D_2)$	40.04	41.62	58.93	60.19	98.97	101.81	40.45	40.88	20.21	20.45
15 th May (20 th SMW - D ₃)	36.72	38.34	54.72	56.13	91.44	94.47	40.16	40.58	20.14	20.29
30 th May (22 nd SMW- D ₄)	19.51	20.28	48.68	49.21	68.19	69.49	28.61	29.18	16.17	16.73
SEm ±	2.57	2.69	1.36	1.49	4.31	4.45	1.38	1.31	0.50	0.46
CD (p ≤ 0.05)	8.02	8.33	4.29	4.68	12.31	13.02	4.28	4.17	1.62	1.46
Planting density										
$50 \text{cm} \times 20 \text{cm} (S_1)$	33.50	35.19	58.92	60.36	92.42	95.55	36.24	37.19	18.03	18.64
$60 \text{cm} \times 20 \text{cm} (S_2)$	36.63	38.53	56.86	58.06	93.49	96.59	39.18	40.75	20.17	20.49
$70cm \times 20cm \; (\; S_3)$	34.76	35.42	52.14	53.20	86.90	88.62	40.00	39.96	19.97	19.81
SEm ±	0.84	0.85	0.78	0.81	0.65	0.77	0.62	0.61	0.22	0.23
CD (p ≤ 0.05)	2.69	2.68	2.26	2.38	2.06	2.39	2.01	1.94	0.71	0.75

Int. J. Pure App. Biosci. 5 (6): 501-509 (2017)

 Table 5: Relative economics of maize as influenced by different planting dates and planting density under irrigated conditions

	Treatments	Cost of cultivation (US\$ ha ⁻¹)	Gross returns (US\$. ha ⁻¹)	Net return (US\$. ha ⁻¹)	Benefit : Cost ratio	
	(15 th April)× (50cm×20cm)	170	1804	1239	2.17	
	(15 th April)× (60cm×20cm)	170	1811	1245	2.18	
	(15 th April)× (70cm×20cm)	170	1786	1220	2.14	
	(30 th April)× (50cm×20cm)	170	1721	1156	2.03	
	(30 th April)× (60cm×20cm)	170	1727	1162	2.04	
	(30 th April)× (70cm×20cm)	170	1702	1137	1.99	
	(15 th May)× (50cm×20cm)	170	1679	1114	1.95	
	(15 th May)× (60cm×20cm)	170	1685	1120	1.96	
	(15 th May)× (70cm×20cm)	170	1661	1095	1.92	
	(30 th May)× (50cm×20cm)	170	1372	812	1.42	
	(30 th May)× (60cm×20cm)	170	1378	818	1.43	
	(30 th May)× (70cm×20cm)	170	1353	793	1.39	
Cost of seed = US\$. 0.4 kg ⁻¹ , Cost of stover= US\$02 kg ⁻¹		Cost of fertilizer:	US\$.	Cost of tractorization = US\$. 70 ha^{-1}		
		Urea= 0.08 kg ⁻¹ , DAP=0 .32 kg ⁻¹	¹ , MOP= 0.24 kg ⁻¹	Irrigation (8 Mandays @ US\$ 2.14)		

Table 6: Cost of Cultivation for Maize Under Irrigated Conditions

S. No		Operations/Inputs	No./Qty	Rate (US\$)	Cost ha ⁻¹
Α		Power cost			
	1	Tractorization (Harrowing, Cultivator and Planking)			100
		Total			100
В		Sowing Operations			0
	1	Cost of seed	25 kg ha ⁻¹	0.4 kg	10
	2	Sowing (Sowing of seed and basal fertilizer placement, opening of furrows etc)	45 Mandays	2.4/day	10
		Total			20
С		Fertilizer Management (120:60:30; NPK and $ZnSO_4$:15-20kg ha ⁻¹)			0
	1	Urea	210 kg	0.08 kg ⁻¹	17
	2	DAP	130 kg	0.32 kg ⁻¹	42
	3	МОР	50 kg	0.24 kg ⁻¹	12
	4	ZnS04	20 kg		0
	5	Application (Basal + Split)	5 Mandays	2.4	11
		Total			81
D		Herbicide Application			0
	1	Atrazine	1 kg a.i ha ⁻¹	4.29 kg ⁻¹ with 50% a.i	9
	2	Atrazine application	2 Mandays	2.4/=	4
		Total			13
Е		Irrigation (4 times)	8 Mandays	2.4	17
F		Hoeing, weeding and earthing up (At Knee high stage and 50-55 DAS)	50 Mandays	2.4	107
		Total			107
G		Watch and Ward	15 Mandays	2.4	32
		Total			32
Н	1	Cob picking and harvesting	40 Mandays	2.4	86
	2	Drying	3 Mandays	2.4	6
	3	Shelling and winnowing	10 Mandays	2.4	21
		Total			114
		Grand Total US\$			570

Int. J. Pure App. Biosci. 5 (6): 501-509 (2017)

 Table 7: Relative economics of maize as influenced by different Planting Dates and planting density under un-irrigated mulched conditions

Treatments	Cost of cultivation (US\$ ha ⁻¹)	Gross returns (US\$ha ⁻¹)	Net returns (US\$ ha ⁻¹)	Benefit : Cost ratio
(15 th April)× (50cm×20cm)	734	1550	816	1.11
(15 th April)× (60cm×20cm)	734	1586	852	1.16
(15 th April)× (70cm×20cm)	734	1536	802	1.09
(30 th April)× (50cm×20cm)	734	1486	752	1.03
(30 th April)× (60cm×20cm)	734	1522	788	1.07
(30 th April)× (70cm×20cm)	734	1471	737	1.00
(15th May)× (50cm×20cm)	734	1463	729	0.99
(15th May)× (60cm×20cm)	734	1499	765	1.04
(15 th May)× (70cm×20cm)	734	1448	715	0.97
(30th May)× (50cm×20cm)	734	1160	426	0.58
(30 th May)× (60cm×20cm)	734	1196	462	0.62
(30 th May)× (70cm×20cm)	734	1138	400	0.54

Cost of seed = US\$. 0.4 kg ⁻¹ ,	Cost of fertilizer:US\$.	Cost of tractorization = US\$. 70 ha ⁻¹
Cost of stover= US\$02 kg ⁻¹	Urea= .08 kg ⁻¹ , DAP=0 .32 kg ⁻¹ , MOP= 0.24 kg ⁻¹	Irrigation (8 Mandays @ US\$ 2.14)

Table 8. Cost of Cultivation for Maize under Un-Irrigated Conditions

s	S.No	Operations/Inputs	No./Qty	Rate (US\$)	Cost ha ⁻¹ with tractorization
A		Power cost			100
	1	Tractorization (Harrowing, Cultivator and Planking)			100
		Total			100
В		Sowing Operations			0
	1	Cost of seed	25 kg ha ⁻¹	0.4 kg	10
	2	Sowing (Sowing of seed and basal fertilizer placement, opening of furrows etc)	45 Mandays	2.4/day	10
		Total			20
С		Fertilizer Management			0
	1	Urea	160 kg	0.08 kg ⁻¹	17
	2	DAP	98 kg	0.32 kg ⁻¹	42
	3	МОР	33 kg	0.24 kg ⁻¹	12
	4	ZnS0 ₄	10 kg		0
	5	Application (Basal + Split)	5 Mandays	2.4	11
		Total			81
D		Herbicide Application			
	1	Atrazine	1 kg a.i ha ⁻¹	4.29 kg ⁻¹ with 50% a.i	0
	2	Atrazine application	2 Mandays	2.4/=	9
		Total			4
E		Mulching	20 t ha ⁻¹	2.4	13
F		Hoeing, weeding and earthing up (At Knee high stage and 50-55 DAS)	50 Mandays	2.4	17
		Total			107
G		Watch and Ward	15 Mandays	2.4	107
		Total			32
Н	1	Cob picking and harvesting	40 Mandays	2.4	32
	2	Drying	3 Mandays	2.4	86
	3	Shelling and winnowing	10 Mandays	2.4	21
		Total			114
		Grand Total US\$			570

CONCLUSION

In irrigated condition for higher grain yield planting density can be decreased i.e under 40cm×20cm. Where un-irrigated mulched condition planting density need to increased up to 65cm×20cm for higher grain yield, and under both (Irrigated & Unirrigated) conditions highest net return, gross return and B: C ratio was observed with treatment combinations of sowing on 15th April (D₁) with spacing $60 \text{cm} \times 20 \text{cm}$ (S₂). While lowest net return, gross return and B: C ratio was observed with treatment combination of 30th May (D₄) with spacing of 70cm \times 20cm (S₃). Since most of the maize area in Kashmir valley is rainfed. Therefore, mulching is strongly recommended.

REFERENCES

- Agriculture Research Data Book. IASRI Library Avenue Pusa New Delhi. pp 15-158 (2013).
- 2. DES. Economic survey. Directorate of Economics and Statistics. Planning and Development Department, Jammu and Kashmir, 214 (2011).
- Directorate of Economics and Statistics. Ministry of Agriculture Government of India (2014).
- 4. Sani, B.M., Oluwasemire, K.O. and Mohammed, H.I., Effect of irrigation and plant density on the growth, yield and water use efficiency of early maize in the nigerian savanna. arpn. *Journal of*

Agricultural and Biological Science, **3(2)**: (2008).

- 5. UNESCO. The United Nations World Water Development Report 3: Water in a Changing World. Paris: UNESCO, and London: Earthscan (2009).
- Gan Y.T. *et al.*, Ridge-Furrow Mulching Systems-An Innovative Technique for Boosting Crop Productivity in Semiarid Rain-Fed Environments. Advances in Agronomy, **118**: 429–476, 10.1016/B978-0-12-405942-9.00007-4 (2013).
- 7. Pruitt, W.D., Relation to consumptive use of water to climate (1960).
- Jenson, M.C., Middleton, J.E. and Pruuit, W.D., Scheduling of irrigation from pan evaporation. *Washington Agriculture Experimental Station Bulletin*, **459**: 28 (1961).
- 9. Valencia, J.A. and Steven, A.B., Sasakawa Africa Association, Mexico City: 14 (1999).
- Cantarero, M. Luque, S.F. and Rubiolo, O.J., Effect of sowing dates and plant densities on grain number and yield of maize. *Agricultural Sciences* 17: 3-10 (2000).
- Marchao, R.L. Brasil, E.M. Duarte, J.B. Guimaraes, C.M. and Gomes, J.A., Plant density and agronomic traits of maize hybrids in narrow row spacing. *Pesquisa Agropecuaria Tropical*, **35(2)**: 93-10 (2005).